HRAE R GRS BT

CANE S ELF RN IRSY NI

PR =
R SR B

2009409 H01H

@ File-System Structure

© FS Implementation
© Directory Implementation
@ Allocation Methods

© Free-Space Management

Q NI

BAE RG]

File-System Structure

File-System Structure |

@ File structure

e Logical storage unit
o Collection of related information

File system resides on secondary storage (disks)

File system organization

e How the file system should look to the user
e How to map the logical file system onto the physical
secondary-storage devices

File system organized into layers

Layered File System

BAE R G 5

File-System Structure

File-System Structure Il

application programs

filename
logical file system

Logical block address

file -organization module

; Physical block address
basic file system
Issue commands to /O
to retrieve physical
block
1/0 control

Hardware-specific
instructions

devices

FS Implementation

FS Implementation |

@ structures and operations used to implement file system
operation, OS- & FS-dependment

e on-disk structures

@ in-memory structures
@ on-disk structures

e boot control block

@ to boot an OS from the partition (volume)
o if empty, no OS is contained on the partition

e volume control block
e directory structure
o per-file FCB

FS Implementation

FS Implementation Il

@ in-memory information

e used for both FS management and performence improvement
via caching

e data are loaded at mount time and discarded at dismount

e structures include:

in-memory mount table

in-memory directory-structure cache
system-wide open-file table
per-process open-file table

FS Implementation

In-Memory File System Structures

—
O

[]
’—' []
directory structure

open (file name) ﬂ

d\feCTOTY structure file-control block

user space kernel memory secondary storage

(@)

d\ CIC L]

4
data blocks
read (index) —— \\-l:l

per-process system-wide file-control block
open-file table open-file table
user space kernel memary secondary storage
(b)

E

5t

FS Implementation

o A Typical File Control Block

file permissions
file dates (create, access, write)
file owner, group, ACL
file size
file data blocks or pointers to file data blocks

BAE R G 5

FS Implementation

partitions and mounting

@ partition
o raw (E.g. UNIX swap space & some database) VS. cooked
e boot information, with its own format

@ boot image
@ boot loader unstanding multiple FSes & OSes

dual-boot

@ root partition is mounted at boot time
@ others can be automatically mounted at boot or manually
mounted later

BAE R G 5

FS Implementation

Virtual File Systems

e Virtual File Systems (VFS) provide an object-oriented way of
implementing file systems.

e VFS allows the same system call interface (the API) to be
used for different types of file systems.

@ The API is to the VFS interface, rather than any specific type
of file system.

@ Schematic View of Virtual File System

file-system interface

VFS interface
'] i
local file system local file system remote file system
type 1 type 2 type 1

}
disk y

network

disk

: e R B

Directory Implementation

Directory Implementation

@ Linear list of file names with pointer to the data blocks.

e simple to program
e time-consuming to execute

@ Hash Table — linear list with hash data structure.

e decreases directory search time

e collisions — situations where two file names hash to the same
location

e Fixed & variable size or chained-overflow hash table

U e

Allocation Methods

Allocation Methods

@ An allocation method refers to
how disk blocks are allocated for files
so that disk space is utilized effectively
& files can be accessed quickly

@ Contiguous allocation
@ Linked allocation

© Indexed allocation

@ Combined

Allocation Methods

1. Contiguous Allocation |

@ Each file occupies a set of contiguous blocks on the disk
@ Simple — directory entry only need

o starting location (block #)

o & length (number of blocks)

@ Mapping from logical to physical
LogicalAddress/512 = Q... ... R
Block to be accessed = Q + starting address
Displacement into block = R

BAE R G 5

Allocation Methods

1. Contiguous Allocation Il

directory
o file start length
o] 1] 2 s count 0 2
f tr 14 3
4l 501 L] 701 mal 19 6
8] o o[l 8 el
tr f 6 2
12[]13[114115]
16017118191
mail
20121022023
242526127
list
28[]29[]30[]31[]

Allocation Methods

1. Contiguous Allocation IlI

@ Advantages:

e Support both random & sequential access

o Start block: b;
Logical block number: i
=>physical block number: b + i
o Fast access speed, because of short head movement

@ Disadvantages:
e External fragmentation
o Wasteful of space (dynamic storage-allocation problem).

e Files cannot grow,
or File size must be known in advance.
=Internal fragmentation

U e

Allocation Methods

Extent-Based Systems

@ Many newer file systems (l.e. Veritas File System) use a
modified contiguous allocation scheme

@ Extent-based file systems allocate disk blocks in extents
@ An extent is a contiguous block of disks

o Extents are allocated for file allocation
o A file consists of one or more extents.

g B

Allocation Methods

2. Linked Allocation |

@ Each file is a linked list of disk blocks: blocks may be
scattered anywhere on the disk.

@ Directory

o First block
o Last block

e Two types Q Implicit

Q@ Implicit ook -
@ Explicit oc = | pointer

BAE RG]

Allocation Methods

2. Linked Allocation |l

directory

| fle start end
S jeep 9 25
41 §(1 8] 70J
8]
121311471507
16[[17[118]19[]
20[J21p2[]23[]
24252627
28[]29[130 J31[]

{0117

Allocation Methods

2. Linked Allocation Il

o Allocate as needed, link together

e Simple — need only starting address

@ Free-space management system — no waste of space
@ Disadvantage:

e No random access
e Link pointers need disk sapce

o E.g.: 512 per block, 4 per pointer =-0.78%
@ Solution: clusters
= disk throughput 1
But internal fragmentation?

U e

Allocation Methods

2. Linked Allocation IV

e Mapping
512 —1 =511
LogicalAddress/511 = Q.. R

Block to be accessed is the ch block in the linked chain of
blocks representing the file.
Displacement into block = R 4+ 1

@ How to reduce searching time?

Allocation Methods

File-Allocation Table (FAT) |

o FAT: Explicit linked allocation
Disk-space allocation used by MS-DOS and OS/2

e A section of disk at the beginning of each partition is set aside
to contain the table

o Each disk block, an entry, contains the index of the next block
in the file

o Last block entry, end-of-file

e Unused, 0

@ Directory entry contains the first block number
@ Now support random access, but still not very efficient

@ May result in a significant disk head seeks: Cached FAT

BAE R G 5

Allocation Methods

File-Allocation Table (FAT) I

directory entry

test

[217

name

start block

no. of disk blocks

217

339

618

=

618

339

FAT

Allocation Methods

File-Allocation Table (FAT) III

@ Compute FAT size

Disk space

Block size

Totalblocknumber
4x 2% =2M < 5><222

o Length of each FAT entry?
o Length of FAT?

80GB

4KB

80 x 230/212 = 5 x 222
< 8x 2% =2%

Allocation Methods

3. Indexed Allocation |

@ Brings all pointers together into one location — the index
block.
e Each file has its own index block

e Index block address is stored in directory entry.
e Each block is an array of pointers

o Logical block number i, the i* pointer

@ Logical view. index table

———[]
F——0
|

—>0O

0O

index table

U e

Allocation Methods

3. Indexed Allocation Il

T
o 10 21 31

directory

file
ieep

index block
19
l

20[J21[J22[A23[]~
2425261271
28[29[1301311

Allocation Methods

3. Indexed Allocation |l

@ Need index table
o Advantage:

e Random access

e Dynamic access without external fragmentation
@ Disadvantage:

e have overhead of index block.
o File size limitation, since one index block can contains limited
pointers

U e

Allocation Methods

3. Indexed Allocation |V

@ Mapping from logical to physical
e maximum file size 256K words & block size of 512 words.
256K/512 = 218 /29 = 29 = 512
We need only 1 block for index table.
LogicalAddress/512 = Q. R

Q = displacement into index table
R = displacement into block

e How to support a file of unbounded length? (suppose
block size of 512 words).

© linked scheme
@ multi-level index scheme

J 5 Bt

Allocation Methods

3. Indexed Allocation V

@ Linked scheme

o Link blocks of index table (no limit on size).

e Mapping
LogicalAddress/ (512 x 511) = Qq Ry
Q; = block of index table

Ry is used as follows:

R /512=Qy...... R
®>= displacement into block of index table
R2 displacement into block of file:

BAE R G 5

Allocation Methods

3. Indexed Allocation VI

@ Two-level index (maximum file size is 5123)
LogicalAddress/ (512 x 512) = @y Ry
@, = displacement into outer-index
Ry is used as follows:
Ri/512=Qy...... Ry
@, = displacement into block of index table
Ry displacement into block of file:

Allocation Methods

3. Indexed Allocation VII

—

outer-index

index table file

e I 5 B

Allocation Methods

4. Combined Scheme: UNIX (4K bytes per block) |

mode
owners (2)
timestamps (3)
size block count
 data |
direct blocks 7 :
x
= B data =
single indirect —{ s data
= .
double indirect r: %[data |
triple indirect h B Gata |
. Le=e
L=—»f data |

Allocation Methods

4. Combined Scheme: UNIX (4K bytes per block) I

o if 4KB per block, 4B per entry

Direct blocks = 10 x 4KB = 40KB

4KB/4B = 1K

1K x 4KB = 4MB

Double indirect 1K x 4MB = 4GB
Triple indirect = 1K x4GB=4TB

Number of entries per block

Single indirect

Maximnm file size = ?

BAE R G 5

Free-Space Management

Free-Space Management

@ Disk Space

o limited

o Free space management

o To keep track of free disk space
o Free-space list

@ Algorithms

@ Bit vector
@ Linked list
© Grouping (Al EEHAE)
© Counting

Free-Space Management

1. Bit vector |

@ Free-space list is implemented as a bit map or bit vector
e Each block —— 1 bit

o 1=free;
o O=allocated

e E.g.: Bit vector (n blocks)

bitl] — {1 = block]j] free

0 = block[i] occupied

Free-Space Management

1. Bit vector I

@ Block number calculation
e Base unit:
o word (16 bits) or other
e n blocks:
e bit map length = (n+ 15)/16

o If first K words is 0, & (K + 1) word > 0,
the first (K + 1) word's first 1 bit has offset L,
then
first free block # =7

first free block number N= K x 16 + L

Free-Space Management

1. Bit vector Il

e Simple
@ Must be kept on disk
Bit map requires extra space, Example:
block size = 2'2 bytes
disk size = 230 bytes (1 gigabyte)
n = 230/212 = 218 bits (or 32K bytes)
e Solution: Clustering

o Efficient to get the first free block or n consecutive free
blocks, if we can always store the vector in memory.

e BUT Copy in memory and disk may differ.
E.g. bit[i] = 1 in memory & bit[i] = 0 on disk

BAE R G 5

Free-Space Management

1. Bit vector IV

e Solution:
Set bit[i] = 1 in memory.
Allocate block([i]
Set bit[i] = 1 in disk

@ Need to protect:

o Pointer to free list
e Bit map

g B

Free-Space Management

2. Linked Free Space List on Disk |

link together all the free disk blocks

o First free block
o Next pointer

Not efficient

Cannot get contiguous space easily

No waste of space

Free-Space Management

2. Linked Free Space List on Disk I

free-space list head —

Free-Space Management

3. Grouping

@ To store the addresses of n free blocks (a group) in the first
free block

e First n-1 group members are actually free
e Last one contain the next group
e And so on

e Eg.: UNIX

g B

Free-Space Management

4. Counting

@ Assume:

e Several contiguous blocks may be allocated or freed
simultaneously

e Each = first free block number & a counter (number of free
blocks)

@ Shorter than linked list at most time, counter > 1

U e

@ File-System Structure

© FS Implementation
© Directory Implementation
@ Allocation Methods

© Free-Space Management

Q NI

BAE RG]

NGRS,

ifigh 1 J

BAE RG]

	File-System Structure
	FS Implementation
	Directory Implementation
	Allocation Methods
	Free-Space Management
	小结和作业

